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An energy and momentum conservation theorem is derived for electrostatic particle 
simulations. These allow verification of how well a code is conserving energy and momentum 
in the presence of external sources. c’ 1984 Academic Press, Inc. 

I. INTRODUCTION 

Electrostatic particle simulations, which retain only the Coulomb force of 
interaction between particles, are useful approximations in many problems. From the 
complete set of Maxwell’s equations, one can derive [ 1, 21 an energy and momentum 
flux theorem for the fields 

where S = (c/4n) E x B is the Poynting vector, and 

EE+BB-+(E.E+B.B)l 
! 

(2) 

is the Maxwell stress tensor and I is the unit tensor. 
Since in electrostatics, B does not appear in the field equations, it is not 

immediately clear if the Poynting vector has any meaning. In an earlier paper [3]? it 
was shown that one could indeed derive an energy flux vector in the electrostatic 
limit. In this paper, an analogous momentum conservation theorem will be derived. 
These two laws, when combined with the flow of particle energy and momentum, 
allow one to account completely for energy and momentum flow in electrostatic 
systems. One can therefore determine if a simulation model is properly conserving 
these quantities even in the presence of external sources, such as one may have in the 
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simulation of RF heating or current drive. This is important because even in models 
using momentum or energy conserving algorithms [4], these quantities are not 
conserved when external sources are driving the system. Unlike much of the earlier 
work on energy and power [5, 61, no linearization has been employed. 

II. ENERGY AND MOMENTUM FLOW IN ELECTROSTATIC FIELDS 

The energy flow relation for electrostatic fields can be derived by delining a vector 
I, equal to the total current, conduction plus displacement, 

and the vector 

V-z@, (5) 

where the electric field is related to the electrostatic potential according to E = -V@. 
By making use of Poisson’s equation V2@ = -47~~ and the equation of continuity, 
V . j + ap/at = 0, one can readily show that 

V.r=V.j-&$(V’@)=O. (6) 

It follows that V . V = z . V@, and therefore 

Thus, the vector V is the required energy flux vector, and Eq. (7) is the electrostatic 
analogue of Eq. (1). 

Expressions for energy flow in electrostatic fields similar to equation (7) have 
appeared recently [3, 7-91. The energy flux vector V is not uniquely defined. Only the 
divergence of V has physical significance, so that another vector with equal 
divergence can also be used [8]. It is less well known [lo] that the energy density has 
the same type of arbitrariness. For example, if one defines electrostatic energy by the 
quantity prP/2, then the vector 

satisfies the equation 

(9) 
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and thus V’ and p@J2 could also be used to describe energy flow in electrostatic 
fields. The form of Eq. (7) is, however, convenient, since it is simple to calculate in a 
particle code, and will be used here. 

In a similar manner one can derive the momentum flux relation for electrostatics. 
The electrostatic force density is given by 

pE=-&E(V.E). 

Since for an electrostatic system C x E = 0, one can show that 

(10) 

-Ex(VxE)=(E.V)E-+‘(E.E)=O. (11) 

Therefore by adding Eqs. (10) and (11) one obtains the relation between momentum 
flux and force density 

pEz& qV.q+(E.V)E-+V(E.E) =V.T. 
J 

Where 

EE-+(E.E)I 

(12) 

(13; 

is the Maxwell stress tensor in the limit c --t co. Equation (12) is the electrostatic 
analogue of Eq. (2). Note that electrostatic fields do not carry momentum and there 
is no electrostatic analogue to the electromagnetic momentum vector S/c”, even 
though there is an analogue to the Poynting vector S. 

III. ENERGY AND MOMENTUM FLUX CARRIED BY PARTICLES 

In order to account fully for energy and momentum flow in electrostatic particle 
simulations, one needs to take into account the flow of energy and momentum carried 
by particles. For finite-size particles with shape function S(s), one can define the 
kinetic energy flux vector 

K = + c m,v;(t) vi(t) S[r -r,(t)] 
1 

and the kinetic energy density, 

where the subscript i refers to particle number, P is the spatial variable, and ri is the 
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position of the center of the ith particle. By differentiation of these quantities, one can 
show that 

r 

V . K + $= c mivi(t) 
i 

* * S[r -r,(t)]. 

In a similar manner one can show that 

V.M+$=X 
I 

m, F S[r - r,(t)] 

where 

M s C mivi(r) vi(t) J[r - ri(t)] 

is the particle momentum flux tensor and 

P E C 17ZiVi(t) S [r - ri(t)] 
I 

is the particle momentum density vector. 

IV. ENERGY AND MOMENTUM BALANCE 

The particle quantities and field quantities are related by Newton’s law 

dvi(t) 
mi dt - = qiP[riit>l) + qivdt> X But/c, 

where 

(E[r,(t)]) = -I S[r’ - ri(t)] V@(r’) d3r’ 
” 

(16) 

(17) 

(18) 

(19) 

(201 

(21) 

is the net electric field accelerating the particle and B,,, is any non-self-consistent 
external magnetic field one may wish to impose in the particle equation of motion. 
Combining Eqs. (7) and (16) and substituting Eq. (20) allows one to write the overall 
energy balance equation 

V.(K+V)+z [U+g]=x qivi(t)* ((E[ri(t)])-E(r)lS[r--r,(t)] (22) 
L 

where we have used the expression 

(23) j(r) = C qivi(t) S[r - r,(t)]. 
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The term on the right-hand side of Eq. (22) represents the work done by the internal 
tension force which is constraining an extended particle to move together as a unit, 
when different parts of the particle feel a different electric field. When integrated over 
a particle, the net work done on the particle by this tension force vanishes, and in the 
limit of a vanishingly small particle, the right-hand side also approaches zero. 

The energy flow associated with this internal tension force is, of course. of no 
physical interest in most simulations, but its presence reminds one that one should 
not attempt to account for energy flow on scale lengths less than the particle size. In 
any case, for fields which do not vary rapidly on the scale of the particle, the right- 
hand side of Eq. (22) is small and point particle result is approximately valid: 

r 

V. (K+V)+$ (24) 

In a similar manner one can combine Eqs. (12) and (17) and substitute Eq. (20) to 
obtain the overall momentum balance equation 

where we have used the expression 

P(r) E T sSlr - ri(f>l- w4 

As before, the last term of the right-hand side of Eq. (25) represents the momentum 
flow associated with the internal tension force. The point particle result is 

To obtain a global energy conservation theorem for simulation, one can express 
Eq. (22) in integral form by making use of the divergence theorem 

Q S 
(K+V).da+i (WE+ WK)=O, 

where WE = j,. (E*/&r) dV is the total electrostatic energy inside the simulation 
volume V, which is enclosed by surface S and W, = zi m,uf/2 is the total kinetic 
energy. Note that the volume integral of the right-hand side of Eq. (22) vanishes iden- 
tically for all particles inside the volume V. 

An expression similar to Eq. (28) was recently derived by Swift and Ambrosiano 
[9]. Their derivation was based on the Vlasov equation, an assumption which is net 
necessary, although generally adequate for particle simulations. More importantly, 



466 VIKTORK.DECYK 

however, they neglected the longitudinal displacement current -( 1/47r) V(&B/&) in 
their expression for the energy flow (compare Eq. (28) with Eq. (14) in [9]). 
Although the energy flow associated with this term is zero for the boundary 
conditions they considered, it is not generally true. And for the case of antennas on 
the boundary, this term is crucial, as is shown in the next section. 

A similar expression exists for the momentum 

f (M-T)*da+g=/ (jXB,,,/c)dV, 
s V 

(29) 

where II E Cj nzivi is the total momentum content inside the simulation volume. 
So far this development has been in terms of continuous spatial variables. In 

practice, the field quantities in a particle simulation are defined on a grid. Concep- 
tually, this presents no problem, since the only place the grid quantities enter is in the 
final evaluation of Eqs. (28) and (29), where one must replace the field integrals by 
discrete sums over the field quantities. Volume integrals of particle quantities, such as 
W, and II, reduce to summations over particle quantities. 

V. APPLICATION 

The surface integrals involving only particle quantities, IS K . da and $, M a da, 
measure the rate of energy and momentum increase, respectively, due to particles 
entering or leaving the computation region. If particles which leave through one 
boundary are reintroduced on the opposite side, then these terms will vanish. The 
surface integrals involving JS V . da and 4 T . da measure the rate of energy and 
momentum change due to the fields. If the simulations have periodic boundary 
conditions for both particles and fields, then these terms will vanish. If only the 
particles are periodic but not the fields, such as the case considered in [9], then the 
term involving mixed particle and field quantites, j@ in V, will not vanish in general. 
If specular reflection is used for the particles, then those particle quantities which 
involve odd powers of v . rZ, such as j . rt^, and K . n^, where n” is the unit normal, will 
vanish at the boundaries. Other cases have to be considered individually by keeping 
track of the amount of energy or momentum flux in the particles crossing the boun- 
daries. 

An example where these conservation equations proved useful was in the 
simulation of plasma heating by launching electrostatic lower hybrid waves from an 
antenna at one boundary [ll]. Specular reflection was used so that when Eq. (28) 
was integrated one obtained the result 

W,+ W&-~‘dl$ 
0 s 

@V g. da = constant. (30) 

The last term on the left-hand side of this equation can be interpreted as the work 
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done on the plasma by the antenna. In our example, furthermore, the model was 
periodic in one direction ($) and the Neumann boundary condition was used at 
x = L, (that is, @D/8x) (x = L,) = 0), so that only the surface at x = 0 contributed 
to the integral. Numerically, the time integration was done by using the trapezoidal 
rule, so that 

= constant. 

Since the quantities Sp and &D/8x at the boundaries had to be calculated anyway [ 12 j 
in order to solve Poisson’s equation, calculation of Eq. (3 1) involved negligible 
computer time and only slightly more storage. 

When Eq. (31) was applied to these heating simulations, we obtained the same 
energy conservation (0.5% for 6000 time steps) for all amplitudes of the exciting 
held, even though the plasma energy doubled in some cases. This provided a valuable 
check on the integrity of the simulation. 

An example where the momentum conservation equations proved useful was in the 
simulation of current drive [ 131. We were primarily interested in accounting for the 
momentum increase along B,,, = B, y, to be sure it was not due to some nonphysical 
effect. With specularly reflecting particles Eq. (29) can be integrated to give 

I17,. - *’ dt .- T,, . da = constant, 
J f 0 s 

where 

T,,=& 
I 
E,E-+(EB)?; . 

I 

For the same geometry as before, Eq. (32) reduces to 

“7? + -& “j’ At, IL’ E.&J E&J ’ dy = constant. 
n-0 -0 .X=0 

(32) 

(33) 

Starting with an electron drift equal to 30% of the thermal velocity, (c)/v, = 0.3, we 
found momentum was conserved to within a few tenths of a percent after 12,000 time 
steps, even when the plasma momentum doubled. 
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